skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Zhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2026
  2. Free, publicly-accessible full text available December 11, 2025
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available December 10, 2025
  5. We present a study on the development of piezoelectric nanofibers for wearable hemodynamic sensing by incorporating nanoparticle doping of piezoelectric nanofibers. The composite material was characterized using various techniques, including scanning electron microscopy, X-ray diffraction, and tensile test. The material was also evaluated in a custom-built pressure chamber. Achieving optimal sensor performance, the study identified 20 wt% BTO composite materials as ideal, with a peak voltage output of 0.12V. Higher concentrations presented electrospinning difficulties, compromising material consistency. Quantitative analysis through fast Fourier transform (FFT) and digital bandpass filtering precisely isolated physiological signals, notably respiration and heartbeat, with the sensor demonstrating accurate detection capabilities at frequencies of 0.2, 1.35, and 2.65 Hz, indicative of the targeted physiological processes. The results demonstrate a promising potential for the use of these materials in future wearable hemodynamic sensing applications. 
    more » « less
  6. We study zero-sum differential games with state constraints and one-sided information, where the informed player (Player 1) has a categorical payoff type unknown to the uninformed player (Player 2). The goal of Player 1 is to minimize his payoff without violating the constraints, while that of Player 2 is to either violate the state constraints, or otherwise, to maximize the payoff. One example of the game is a man-to-man matchup in football. Without state constraints, Cardaliaguet (2007) showed that the value of such a game exists and is convex to the common belief of players. Our theoretical contribution is an extension of this result to differential games with state constraints and the derivation of the primal and dual subdynamic principles necessary for computing the behavioral strategies. Compared with existing works on imperfect-information dynamic games that focus on scalability and generalization, our focus is instead on revealing the mechanism of belief manipulation behaviors resulted from information asymmetry and state constraints. We use a simplified football game to demonstrate the utility of this work, where we reveal player positions and belief states in which the attacker should (or should not) play specific random fake moves to take advantage of information asymmetry, and compute how the defender should respond. 
    more » « less